- Ashley, J. N., Barber, H. J., Ewins, A. J., Newbery, G. & Self, A. D. H. (1942). J. Chem. Soc. pp. 103-116.
- Katzung, B. G. (1984). Basic and Clinical Pharmacology, edited by B. G. Katzung, 2nd ed., pp. 642–647. Lange Medical Publications, USA.
- Nardelli, M. (1983). Comput. Chem. 7, 95-98.
- Sheldrick, G. M. (1991). SHELXTL-Plus. Revision 4.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Siemens (1991). P3 Diffractometer Program. Version 4.21/V. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Acta Cryst. (1996). C52, 405-407

7β -Hydroxy- 7α -(3-propargyl)-3-methylspiro[5.5]undec-2-en-1-one

S. Lakshmi,^{*a*} K. Subramanian,^{*a*} G. Koellner,^{*b*} Th. Steiner^{*b*} and K. Rajagopalan^{*c*}

^aDepartment of Physics, Anna University, Madras 25, India, ^bInstitut fur Kristallographie, Freie Universitat Berlin, Takustraße 6, D-14159 Berlin, Germany, and ^cDepartment of Organic Chemistry, University of Madras, Madras, India

(Received 13 March 1995; accepted 14 August 1995)

Abstract

The title compound, $C_{15}H_{20}O_2$, contains two sixmembered rings, one of which is in a chair conformation while the other assumes an envelope shape. The molecules form dimers which are connected by $C-H\cdots O$ hydrogen bonds donated by the propargyl residue. The hydrogen-bonding pattern is composed of finite cooperative $C=C-H\cdots O-H\cdots O=C$ chains.

Comment

Terminal alkynes of the present type are used as starting materials for the synthesis of steroids (Nasipuri, 1992). The crystal structure of the title compound, (I), was determined to study the intermolecular contacts of the propargyl residue, which is usually involved in C— $H \cdots X$ hydrogen bonding if suitable acceptors, X, are available (Desiraju, 1991).

©1996 International Union of Crystallography Printed in Great Britain – all rights reserved

Compound (I) crystallizes in a non-centrosymmetric space group with a pair of enantiomeric molecules (A. B) per asymmetric unit. For molecule A, the molecular conformation and the atomic numbering scheme are shown in Fig. 1. Ring 1 is in a chair conformation and Ring 2 adopts an envelope shape. The ring-puckering parameters (following Cremer & Pople, 1975) for Rings 1 and 2 of both molecules are given in Table 3. The hydroxy group forms an intermolecular hydrogen bond to O = C with $O \cdots O = 2.668(4)$ Å (Table 4). Molecules A and B form a pseudo-centrosymmetric dimer, with a non-crystallographic centre of symmetry at x/a = 0.123(3), y/b = 0.519(6), z/c = 0.344(6). The molecules are connected by mutual C-H···O hydrogen bonds donated by the propargyl residues and accepted by the hydroxy groups (Fig. 2) (H···O \simeq 2.37 Å, for normalized H-atom positions). Within this dimer, the two molecules are tilted with respect to each other, so that true centrosymmetry is disturbed [this is reflected in non-zero dihedral angles between corresponding molecular planes; e.g. the least-squaresplanes through rings 1(A) and 1(B) form an angle of 7.0 (2)°, and those through rings 2(A) and 2(B) form an angle of $8.8(2)^{\circ}$].

Fig. 1. Molecular structure and atomic numbering scheme of molecule A. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2. The pseudo-centrosymmetric dimer formed by molecules A and B. Hydrogen bonds are shown as dashed lines.

The hydrogen bonds form finite cooperative C=C- $H \cdots O = C$ chains (Figs. 2 and 3), which constitutes a stronger hydrogen-bonding pattern than isolated O- $H \cdots O$ and C- $H \cdots O$ hydrogen bonds. We

have observed related cooperative arrangements in similar compounds (Lakshmi, Subramanian, Rajagopalan, Koellner & Steiner, 1995).

Fig. 3. Crystal packing arrangement. For clarity, H atoms are omitted. Hydrogen bonds are shown as dashed lines.

Experimental

The compound was prepared by the propargylation of 9methylspiro[5.5]undec-2-ene-1,7-dione. The density D_m was measured by flotation in KI/H₂O.

Crystal data

СЧО	Cu Ka radiation	C6'B
$C_{15}H_{20}O_{2}$		C7B –
$M_r = 232.31$	$\lambda = 1.54184 \text{ A}$	C8 <i>B</i>
Orthorhombic	Cell parameters from 23	C9B
Pna?	reflections	C10B
a = 27.700(3) Å	$A = 20 - 34^{\circ}$	O11B
u = 27.700(3) R	0 = 20 - 34	012 <i>B</i> —
$b = 7.630(4) \text{ A}_{a}$	$\mu = 0.569 \text{ mm}^{-1}$	T -1-1
c = 12.382(1) A	T = 293 (2) K	Iadi
$V = 2617(1) \text{ Å}^3$	Rectangular block	C1A—C2A
Z = 8	$0.6 \times 0.4 \times 0.4$ mm	C1A—C6A
$D_r = 1.179 \text{ Mg m}^{-3}$	Pale vellow	C1A - C2'A
$D_{-1180} M_{g} m^{-3}$		C1A - C6'A
$D_m = 1.100$ Wig m		C2A—C3A
		C2A—C8A
Data collection		C2A011A
Enraf-Nonus CAD-4 diffrac-	$\theta_{\rm max} = 59.81^{\circ}$	C3A—C4A
tometer	$h = 0 \rightarrow 31$	C4A—C5A
tometer	$h = 0 \rightarrow 51$	C_{A} C_{A}
ω scans	$k \equiv 0 \rightarrow 8$	CZA - CSA
Absorption correction:	$l = 0 \rightarrow 13$	$C_2 A = O_1 Z A$
none	3 standard reflections	$C_3 A \rightarrow C_4 A$
2034 measured reflections	frequency: 60 min	C4 A - C3 A
2034 independent reflections	intensity decay: <2%	$C_{7} A - C_{7} A$
2034 independent reflections	mensity decay. $< 2\%$	
1990 observed reflections		CON-CAN

Refinement

 $[l > 2\sigma(l)]$

Rejinemeni		C6A—C1A—C2'A	105.6 (2)	C6B—C1B—C2'B
Refinement on F^2	$(\Delta/\sigma)_{\rm max} = 0.002$	C2A—C1A—C6'A	111.2 (2)	C2B—C1B—C6'B
P(F) = 0.047	$\Delta a = 0.246 \text{ g} \text{ Å}^{-3}$	C2A—C1A—C2'A	111.8 (2)	C2B—C1B—C2'B
R(r) = 0.047	$\Delta p_{\text{max}} = 0.240 \text{ C A}$	C2A—C1A—C6A	109.1 (2)	C2B—C1B—C6B
$wR(F^2) = 0.118$	$\Delta \rho_{\rm min} = -0.258 \ {\rm e \ A}^{-3}$	C1A-C2A-011A	111.1 (2)	C1B-C2B-011B
S = 1.126	Extinction correction: none	C1A—C2A—C8A	110.6 (2)	C1B—C2B—C8B

C9A-C10A

C2'A-C1A-C6'A

C6A-C1A-C6'A

2034 reflections 467 parameters Only H-atom U's refined $w = 1/[\sigma^2(F_o^2) + 0.1154P^2]$ + 0.1113P] where $P = (F_o^2 + 2F_c^2)/3$

Atomic scattering factors from International Tables for Crystallography (1992, Vol. C)

Table	1.	Fractional	atomic	coordinates	and	equivalent
		isotropic di	splacem	ent paramete	ers (Å	¹ ²)

$$B_{\rm eq} = (8\pi^2/3)\sum_i\sum_j U_{ij}a_i^*a_i^*\mathbf{a}_i.\mathbf{a}_j$$

	x	ν	Z	Bea
C1A	0.2506(1)	0.9062 (3)	0.5307 (2)	3.50 (6)
C2A	0.2077(1)	0.7932 (3)	0.4860(2)	3.57 (7)
C3A	0.1680(1)	0.7763 (4)	0.5723 (2)	4.49 (8)
C4A	0.1867 (1)	0.7033 (7)	0.6787 (3)	6.04 (12)
C5A	0.2288 (1)	0.8103 (7)	0.7231 (3)	6.28 (13)
C6A	0.2690(1)	0.8235 (5)	0.6381 (3)	4.82 (8)
C2'A	0.2939(1)	0.9046 (4)	0.4539 (2)	4.18 (7)
C3'A	0.3269(1)	1.0539 (4)	0.4558 (2)	4.44 (8)
C4'A	0.3201 (1)	1.1968 (4)	0.5168 (2)	4.44 (8)
C5'A	0.2765 (1)	1.2162 (4)	0.5857 (3)	4.86 (10)
C6'A	0.2352(1)	1.0987 (3)	0.5476 (3)	4.10(7)
C7A	0.3559(1)	1.3453 (7)	0.5181 (4)	6.41 (13)
C8A	0.1871 (1)	0.8754 (4)	0.3814 (3)	4.52 (8)
C9A	0.1468 (1)	0.7763 (4)	0.3348 (3)	4.63 (8)
C10A	0.1143 (1)	0.7002 (4)	0.2963 (3)	5.35 (9)
011 <i>A</i>	0.2229 (1)	0.6179 (2)	0.4636 (2)	4.66 (6)
O12A	0.3029(1)	0.7789 (3)	0.3957 (2)	6.73 (9)
C1 <i>B</i>	-0.0060(1)	0.1332 (3)	0.1586 (2)	3.75 (7)
C2B	0.0390(1)	0.2432 (3)	0.1952 (2)	3.78 (7)
C3B	0.0733 (1)	0.2736 (4)	0.0993 (3)	4.93 (9)
C4B	0.0487 (1)	0.3595 (7)	0.0032 (3)	6.25 (10)
C5B	0.0042 (1)	0.2559 (8)	-0.0329 (3)	6.63 (14)
C6B	-0.0301 (1)	0.2274 (5)	0.0620 (3)	4.96 (10)
C2'B	-0.0443 (1)	0.1236 (4)	0.2479 (2)	4.55 (8)
C3'B	-0.0768 (1)	-0.0270 (4)	0.2499 (2)	4.67 (7)
C4'B	-0.0739 (1)	-0.1628 (4)	0.1832 (2)	4.40 (8)
C5'B	-0.0346 (1)	-0.1729 (5)	0.1009 (4)	5.42 (10)
C6'B	0.0082 (1)	-0.0564 (4)) 0.1290 (3)	4.84 (9)
C7B	-0.1093 (1)	-0.3119 (6)	0.1853 (4)	6.15 (12)
C8 <i>B</i>	0.0652 (1)	0.1513 (5)	0.2891 (4)	5.73 (11)
C9B	0.1049 (1)	0.2514 (4)	0.3378 (3)	5.35 (9)
C10B	0.1376 (1)	0.3278 (4)	0.3762 (4)	5.85 (11)
O11B	0.0244 (2)	0.4148 (2)	0.2286 (2)	4.78 (6)
012 <i>B</i>	-0.0501 (1)	0.2429 (4)	0.3126 (2)	7.68 (9)
-	Table 2. Sele	ected geome	tric parameter	rs (Å, °)
CIA—C	2A	1.568 (4)	C1 <i>B</i> —C2 <i>B</i>	1.571 (4)
CIA-C	6A	1.558 (5)	C1 <i>B</i> —C6 <i>B</i>	1.546 (5)
CIA-C	2'A	1.531 (4)	C1B—C2'B	1.534 (4)
CIA-C	6' A	1 544 (4)	C1B-C6'B	1.544 (4)

1.539 (4)

1.548 (5)

1.429 (3)

1.520 (6)

1.525 (7)

1.537 (6)

1.460 (4)

1.225 (4)

1.340 (5)

1.489 (5)

1.504 (6)

1.528 (5)

1.466 (5)

1.173 (5)

108.0 (2)

111.1 (3)

C2B - C3BC2B-C8B

C2B-011B

C3B-C4B

C4B-C5B

C5B-C6B

C2'B-C3'B

C2'B-O12B

C3'B-C4'B

C4'B-C5'B

C4'B---C7B

C5'B-C6'B

C8B-C9B

C9B-C10B

C2'B-C1B-C6'B

C6B—C1B—C6'B

1.537 (5)

1.540 (6)

1.431 (4)

1.520 (6)

1.530 (7)

1.526 (6)

1.459 (5)

1.224 (5)

1.327 (5)

1.494 (6)

1.503 (6)

1.521 (5)

1.468 (6)

1.178 (6)

107.7 (2)

111.3 (3)

106.4 (2) 111.5 (2)

111.5 (2)

108.5 (2)

110.4 (2)

110.4 (3)

C1A—C2A—C3A	110.0 (2)	C1B-C2B-C3B	110.4 (3)
C8A-C2A-011A	109.0 (2)	C8B-C2B-011B	109.3 (3)
C3A—C2A—O11A	105.5 (2)	C3B—C2B—O11B	105.1 (2)
C3A—C2A—C8A	110.6 (2)	C3B—C2B—C8B	111.1 (3)
C2A—C3A—C4A	112.9 (3)	C2B—C3B—C4B	113.1 (3)
C3A—C4A—C5A	112.1 (4)	C3B—C4B—C5B	111.5 (4)
C4AC5AC6A	110.1 (4)	C4BC5BC6B	110.5 (4)
C1A—C6A—C5A	111.9 (3)	C1B—C6B—C5B	113.2 (3)
C1A—C2'A—O12A	122.0 (3)	C1B-C2'B-O12B	121.9 (3)
C1A—C2'A—C3'A	118.3 (3)	C1B—C2'B—C3'B	118.4 (3)
C3'A-C2'A-012A	119.6 (3)	C3'BC2'BO12B	119.6 (3)
C2'A-C3'A-C4'A	123.8 (3)	C2'B—C3'B—C4'B	124.6 (3)
C3'A—C4'A—C7A	121.8 (3)	C3'B—C4'B—C7B	122.8 (3)
C3'A—C4'A—C5'A	121.2 (3)	C3'B—C4'B—C5'B	120.6 (3)
C5'A—C4'A—C7A	117.0 (3)	C5'B—C4'B—C7B	116.6 (3)
C4'A—C5'A—C6'A	111.9 (3)	C4'B—C5'B—C6'B	112.4 (4)
C1A—C6'A—C5'A	113.2 (2)	C1B—C6'B—C5'B	113.8 (3)
C2AC8AC9A	113.6 (3)	C2BC9B	115.3 (3)
C8A-C9A-C10A	178.6 (4)	C8B—C9B—C10B	178.1 (4)

 Table 3. Ring-puckering parameters according to Cremer

 & Pople (1975)

Molecule A	Q (Å)	θ(°)	φ(°)
Ring 1	0.580 (3)	177.0 (3)	154 (6)
Ring 2	0.460 (3)	126.8 (4)	109.2 (5)
Molecule B			
Ring 1	0.573 (4)	2.6 (4)	350 (9)
Ring 2	0.449 (3)	52.8 (4)	311.5 (6)

Table 4. Hydrogen-bond parameters (Å, °)

D — $H \cdot \cdot \cdot O$	D—H	H···O	<i>D</i> 0	$H_{norm} \cdot \cdot \cdot O$	$D - H_{norm} \cdot \cdot \cdot O$
$O11A - H \cdot \cdot O12A$	0.78 (4)	1.93 (4)	2.668 (4)	1.75	154
$O11B - H \cdot \cdot \cdot O12B$	0.91 (8)	2.03 (3)	2.659 (4)	1.99	124
C10A—H···O11B	0.89 (4)	2.54 (5)	3.413 (4)	2.37	162
C10 <i>B</i> —H···O11 <i>A</i>	0.92 (3)	2.50 (5)	3.414 (5)	2.36	164

The structure was solved by direct methods. The initial R index for the model was 0.19. After a few cycles of full-matrix refinement the R index dropped to 0.12. All H atoms were located from difference Fourier maps and refined isotropically. The Flack χ parameter refined to -0.16 (32).

Data collection: *CAD-4 Software* (Enraf-Nonius, 1989). Cell refinement: *SDP* (Frenz, 1978). Program(s) used to solve structure: *SHELXS*86 (Sheldrick, 1985). Program(s) used to refine structure: *SHELXL*93 (Sheldrick, 1993). Molecular graphics: *ORTEPII* (Johnson, 1976). Software used to prepare material for publication: *PARST* (Nardelli, 1983).

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: KA1129). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. Desiraju, G. R. (1991). Acc. Chem. Res. 24, 290–296.

- Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
- Frenz, B. A. (1978). The Enraf-Nonius CAD-4 SDP a Real-Time System for Concurrent X-ray Data Collection and Crystal Structure Solution. Computing in Crystallography, edited by H. Schenk, R. Olthof-Hazekamp, H. van Koningsveld & G. C. Bassi, pp. 64–71. Delft University Press.

- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Lakshmi, S., Subramanian, K., Rajagopalan, K., Koellner, G. & Steiner, Th. (1995). Acta Cryst. C51, 2327-2329.
- Nardelli, M. (1983). Comput. Chem. 7, 95-98.
- Nasipuri, D. (1992). In Stereochemistry of Organic Compounds Principles and Applications. New Delhi: Wiley Eastern.
- Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. University of Göttingen, Germany.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.

Acta Cryst. (1996). C52, 407-409

The α -Pyridyl Nucleoside Analogue 2-Bromo-5-(2-deoxy- α -D-ribofuranosyl)pyridine

STEPHEN NEIDLE,^{*a**} DANIEL C. CAPALDI,^{*b*} JOSEPH V. BERNADETTE^{*b*} AND COLIN B. REESE^{*b*}

^aCRC Biomolecular Structure Unit, The Institute of Cancer Research, Cotswold Road, Sutton, Surrey SM2 5NG, England, and ^bDepartment of Chemistry, King's College, Strand, London WC2R 2LS, England. E-mail: steve@iris5. icr.ac.uk

(Received 19 July 1995; accepted 20 September 1995)

Abstract

The structure of the title compound, $C_{10}H_{12}BrNO_3$, is reported. The ribose sugar has a C3'-endo pucker and the exocyclic torsion angle O5'-C5'-C4'-C3' adopts a gauche⁺ value of 61.0 (9)°.

Comment

The determination of the structure of the title compound, (I), was undertaken in order to unequivocally assign the α -conformation at the C1' atom following its synthesis as part of a project aimed at developing modified nucleosides for DNA triple-strand recognition. The details of the conformational features are being employed in molecular-modelling studies on triple helices with non-standard bases.

